Aquaveo & Water Resources Engineering News

Is a Paid or Community License Right for You?

For us at Aquaveo, we seek to provide state-of-the-art software for your water resources projects. We’d like to see as many hydrologists, civil engineers, and more using our software to better the community and the world. For this reason, we provide with our Surface-water Modeling System (SMS) software, both a trial, community, and paid editions.

The trial version grants you full access to all the features of SMS for a limited time. Typically, this trial period is for two weeks. During the trial, you can use any of the models or functionalities in SMS. This lets you decide what features of SMS you will need for your project.

After the trial period, or when you are ready, you can contact our sales team for a pad license. WIth a full license, you can select what features you want included. Aquaveo has two primary editions: Riverine, and River and Coast. Add-ons are available for each for the packages, or you can custom build what is unlocked so you have exactly the tools and modules you need for your work.

For some of our users, only a limited number of features are needed. The community edition of SMS includes only some of the core components, such as the GIS and Mesh modules, and a few of the more common surface-water models available, such as SRH-2D, ADCIRC, and CMS-Flow. Some limits have been added to these features, for example the number and size of meshes is limited in community edition. The community edition mostly supports small or simple projects and is not intended to support large or complex models.

SMS Community Edition

There are several advantages to having a paid license over relying on the community edition, including access to newer tools and functionality. Furthermore, a current paid license allows access to Aquaveo's technical support and other resources. Fortunately, it is possible to upgrade to a paid license at any time. Once you have a paid license, you retain access to all the features for the version of license you purchase.

Download SMS today and see what version works best for you!

Blog tags: 

Reliable Grid Conversion with the Voronoi UGrid from UGrid Tool

Did you realize while planning your Groundwater Modeling System (GMS) project that a different unstructured grid (UGrid) would be a better fit? UGrids are very flexible and can be refined around streams, wells, basins, and other objects. But sometimes, one type of UGrid may fit better than another for a particular project. The Voronoi UGrid is one of the more flexible types of UGrids available in GMS. The Voronoi UGrid from UGrid Tool in the Toolbox is there to help convert a UGrid into a Voronoi UGrid.

For most UGrids, the attributes and boundary conditions assigned are associated with the edges, points, and nodes, all on the outer edges of the cells. For a Voronoi UGrid, those things are associated with the point at the center of the cell.

Example of a Voronoi grid

If your model is fairly straight-forward, has structured boundaries or rectangular domains, UGrids with rectangular cells might still be the better choice. Or, if you require computational efficiency, the Voronoi UGrid may not be your best choice. However, if those are not considerations, then using the Voronoi UGrid from UGrid Tool may be a good option for you.

With a Voronoi UGrid, you get even greater flexibility to refine around irregular boundaries thus improving your groundwater model’s accuracy. The cells of the Voronoi UGrid are created with an algorithm that depends solely on the geometry of the points, arcs, and polygons in the active coverage. Voronoi UGrid cells can have more sides (up to eight) than just the three or four sides allowed in most other UGrids. Therefore, it can fit into the boundaries of a model and be refined along arcs and at points much more accurately.

You will find the Voronoi UGrid from UGrid Tool in the Unstructured Grid folder of the Toolbox. The Voronoi UGrid from UGrid Tool only needs the input UGrid and a name for the new Voronoi UGrid it will generate. There are some limitations to the tool. Conversions may not occur if any created final cells would have more than 8 edges. The UGrid being converted must contain only 2D cells. And there can also be no disjoint regions where cells aren’t connected to the rest of the UGrid.

Head on over to GMS to see if the Voronoi UGrid from UGrid tTool will help your model!

Blog tags: 

Benefits of 3D Structures

Does your Surface-water Modeling System (SMS) project require simulating the effects of bridges or culverts? For some time we have had the capacity to simulate these structures in 2D or 1D for use with numeric models such as SRH-2D and TUFLOW. More recently, we have added the ability to create and insert these structures in 3D thus improving your modeling capabilities and visualization options.

When running a model, having a bridge or other structure in the model can change the results of the model run. 3D structures provide more detail for how the structure will fit into the landscape. SMS allows the creation of the structure and inserting it into the 2D model, so you can see how and where it fits into the project. This potentially makes for a more accurate model. Furthermore, an unstructured grid of the 3D structure can be generated to visually show how the structure fits into your model..

3D structure example

Currently, SMS has the ability to create two kinds of 3D structures: bridges and culverts. It can also customize each one to include multiple configurations. 3D structures provide extra flexibility in the simulation, such as being able to have variations in the bridge ceiling along the entire width, which can match the reality of bridge structures much more closely. Your model can also include more than one 3D structure and a mix of types of structures as well. But note, multiple 3D structures could slow down your simulation. Currently, 3D structures can only work with SRH-2D models.

Creating a 3D structure will also automate some things you would have likely needed to do manually beforehand, like create the voids necessary for piers and walls. This reduces the potential for errors that manual void creation can have and improves the reliability of the model.

The 3D structure can be used as part of an observation plot and can also generate a new dataset for the maximum water surface elevation (ceiling elevation) in the model. Overtopping is, of course, included, as well as pressure flow through the culvert or under the bridge.

Head on over to SMS and see how adding 3D structures can improve your project today.

Blog tags: 

Incorporating Inline Steering in CMS

Are you wanting to internally couple a CMS-Wave model with your CMS-Flow model? The Surface-water Modeling System (SMS) offers the Inline Steering Model Control option, which allows CMS-Flow steering using CMS-Wave data. The steering is controlled by the CMS-Flow model executable and not SMS. The steering tool is useful in facilitating the process of launching models multiple times. Furthermore, the steering module automates repetitive user tasks. Using the steering tool for CMS will enable data sharing between circulation and wave propagation numerical models.

Example of CMS inline steering

In SMS version 12.1 and later the Inline Steering option is reached by going to the CMS-Flow Model Control dialog:

  1. Build and run a successful CMS-Wave model.
  2. Right-click on the CMS-Flow simulation in the Project Explorer and select Model Control.
  3. Select the Wave tab and select the Inline steering option under the drop-down in the Wave information heading.
  4. Import the specific CMS-Wave solution file.
  5. Enter the inline steering value.

Coupling of models is an efficient and accurate means of calculating wave-driven currents, setup and setdown, and wave-current interaction in nearshore regions, including tidal inlets. In SMS version 12.0 and earlier the steering tool can also be used to facilitate the transfer of data from wave models to circulation models and back. In versions 12.1 and later, the CMS-Flow Model Control is used for steering.

When using Inline Steering, it is necessary to build a CMS-Wave model prior to incorporating any data into CMS-Flow. Following that, it is then possible to build a model in CMS-Flow using the stored data and solution files. If you encounter problems with the CMS-Flow simulation results, and notice that neighboring outputs are not quite right, check the Steering Interval option in the CMS-Flow Model Control Dialog. If this option has a number less than 0.25 inputted, it causes problems as there is no proper indication for CMS-Flow to include CMS-Wave solutions in its calculations. To fix this, set the steering interval to a number greater than zero, and the CMS-Flow simulation should respond to the CMS-Wave inputs.

Try Inline Steering for your CMS-Flow models in SMS today!

Blog tags: 

How to Prioritize Interpolating Multiple Rasters

Do you have a project requiring multiple elevation rasters that are difficult to reconcile with each other? To manage the rasters, and get the best data for your project, our Groundwater Modeling System (GMS) has many tools in the Toolbox to help. One of these, the Interpolate Priority Rasters tool, gives you the ability to prioritize the elevation data from each raster.

When multiple rasters are interpolated to the geometry, multiple datasets will be created, one for each raster. A raster catalog can help consolidate this information but it doesn’t prioritize data. With the Interpolate Priority Rasters tool, you can specify exactly which raster takes precedence first, second, and so on. It will create one dataset that contains all the prioritized information. This ensures that the information most important to your model can be retained and used.

Multiple overlapping rasters

Rasters downloaded from separate sources, or from the same database but at differing times, can contain discrepancies in the data. When the rasters overlap, those differences can create problems with the model. If major discrepancies exist, some of the other tools in the Toolbox can help correct them before using the Interpolate Priority Rasters tool.

In GMS, the Interpolate Priority Raster tool can be used with both 2D and 3D UGrid geometries. All that is needed for this tool is a geometry selected, a dataset used to provide default values for interpolation, a method for interpolation, and the selected rasters placed in the order of priority. Once run, a new dataset is created with the integrated data. If the new dataset is meant to be the elevation of the target geometry, you will need to map it manually because it will not be done automatically, but you will have an interpolated raster that is consistent across the model.

Head on over to GMS and try the Interpolate Priority Rasters tool in your models.

Blog tags: