SMS

Benefits of 3D Structures

Does your Surface-water Modeling System (SMS) project require simulating the effects of bridges or culverts? For some time we have had the capacity to simulate these structures in 2D or 1D for use with numeric models such as SRH-2D and TUFLOW. More recently, we have added the ability to create and insert these structures in 3D thus improving your modeling capabilities and visualization options.

When running a model, having a bridge or other structure in the model can change the results of the model run. 3D structures provide more detail for how the structure will fit into the landscape. SMS allows the creation of the structure and inserting it into the 2D model, so you can see how and where it fits into the project. This potentially makes for a more accurate model. Furthermore, an unstructured grid of the 3D structure can be generated to visually show how the structure fits into your model..

3D structure example

Currently, SMS has the ability to create two kinds of 3D structures: bridges and culverts. It can also customize each one to include multiple configurations. 3D structures provide extra flexibility in the simulation, such as being able to have variations in the bridge ceiling along the entire width, which can match the reality of bridge structures much more closely. Your model can also include more than one 3D structure and a mix of types of structures as well. But note, multiple 3D structures could slow down your simulation. Currently, 3D structures can only work with SRH-2D models.

Creating a 3D structure will also automate some things you would have likely needed to do manually beforehand, like create the voids necessary for piers and walls. This reduces the potential for errors that manual void creation can have and improves the reliability of the model.

The 3D structure can be used as part of an observation plot and can also generate a new dataset for the maximum water surface elevation (ceiling elevation) in the model. Overtopping is, of course, included, as well as pressure flow through the culvert or under the bridge.

Head on over to SMS and see how adding 3D structures can improve your project today.

Blog tags: 

Incorporating Inline Steering in CMS

Are you wanting to internally couple a CMS-Wave model with your CMS-Flow model? The Surface-water Modeling System (SMS) offers the Inline Steering Model Control option, which allows CMS-Flow steering using CMS-Wave data. The steering is controlled by the CMS-Flow model executable and not SMS. The steering tool is useful in facilitating the process of launching models multiple times. Furthermore, the steering module automates repetitive user tasks. Using the steering tool for CMS will enable data sharing between circulation and wave propagation numerical models.

Example of CMS inline steering

In SMS version 12.1 and later the Inline Steering option is reached by going to the CMS-Flow Model Control dialog:

  1. Build and run a successful CMS-Wave model.
  2. Right-click on the CMS-Flow simulation in the Project Explorer and select Model Control.
  3. Select the Wave tab and select the Inline steering option under the drop-down in the Wave information heading.
  4. Import the specific CMS-Wave solution file.
  5. Enter the inline steering value.

Coupling of models is an efficient and accurate means of calculating wave-driven currents, setup and setdown, and wave-current interaction in nearshore regions, including tidal inlets. In SMS version 12.0 and earlier the steering tool can also be used to facilitate the transfer of data from wave models to circulation models and back. In versions 12.1 and later, the CMS-Flow Model Control is used for steering.

When using Inline Steering, it is necessary to build a CMS-Wave model prior to incorporating any data into CMS-Flow. Following that, it is then possible to build a model in CMS-Flow using the stored data and solution files. If you encounter problems with the CMS-Flow simulation results, and notice that neighboring outputs are not quite right, check the Steering Interval option in the CMS-Flow Model Control Dialog. If this option has a number less than 0.25 inputted, it causes problems as there is no proper indication for CMS-Flow to include CMS-Wave solutions in its calculations. To fix this, set the steering interval to a number greater than zero, and the CMS-Flow simulation should respond to the CMS-Wave inputs.

Try Inline Steering for your CMS-Flow models in SMS today!

Blog tags: 

Discover the Map Activity Tools in SMS

Aquaveo’s Surface-water Modeling System (SMS) comes equipped with various tools that streamline the water modeling process. In this collection, the Map Activity and Map Activity to UGrid features in the toolbox allow you to precisely define active and inactive areas of a grid or dataset. Some models and processes depend on being told which areas are active for which purpose these tools have been included.

The tools Map Activity and Map Activity to UGrid are located in the software Toolbox in the Datasets folder and Unstructured Grids folder, respectively. Both will create a new object based on the defined activity: either a new dataset or a new unstructured grid (UGrid).

The Map Activity tool has the ability to choose the activity dataset that will define the values for the new dataset using the Value dataset option, and the ability to choose the dataset that will define the activity for the new dataset using the Activity dataset option. Once you have selected the inputs, the only thing left to do is name the new activity dataset and run the tool. The tool outputs a new dataset that displays the custom inputs in the Graphics Window.

Example of Map Activity to UGrid tool

An important step when using the Map Activity to UGrid tool is establishing the proper activity coverage that defines the active and inactive areas of the unstructured grid. Ensure that you create an “Activity Classification” coverage with defined polygons in order to run the tool successfully. Additionally, assign polygons to the coverage to enable specificity when mapping activity. This tool has the ability to choose the geometry that will define the values for the new UGrid using the Input grid option, and the ability to select the coverage that will define the activity for the new UGrid using the Activity coverage option. After selecting the inputs, you name the new activity UGrid and run the tool. As a result, the tool populates a new UGrid that displays the given dataset inputs in the Graphics Window.

Now that you’ve been introduced to the activity tools in SMS 13.3, try using them in your surface-water models today!

Blog tags: 

Tips for Pressure Zones with Overtopping in SRH-2D Models

Does your SRH-2D project have a box culvert or pressure zone with overtopping that is proving to be a bit difficult to get correct?

Box culverts or pressure zones with overtopping are common features added to many SRH-2D models. Depending on how the pressure zone is created in your Surface-water Modeling System (SMS) project, this can be a tricky process for SRH-2D to handle. Here are some steps and tips for creating this feature successfully in SMS.

1 Use Quadrilateral Elements

Create quadrilateral elements between the boundaries of the pressure zone. Using quadrilateral elements tends to increase the stability and reliability of the SRH-2D model run. Quadrilateral elements can be created in one of two ways.

The first is to create the quadrilateral elements when creating the 2D mesh. Create a polygon for the area between and around the pressure zone. Assign this polygon with the Patch mesh type in the 2D Mesh Polygon Properties dialog.

The second method is to create the quadrilateral elements directly in the mesh using the Split/Merge tool and the Switch Element tool. This can be time-consuming, so it is only recommended for small adjustments.

Box culvert example
2 Create Voids

Create voids in the mesh on either side of the pressure zone. There are two options for creating these voids, but one option seems to work better.

The first option, and the more stable one, is to create the voids on either side of the pressure zone when generating the mesh. Create the voids as polygons and assign them the None mesh type. It is generally best to make each void a quadrilateral polygon to imitate the thickness of a concrete wall or barrier.

The second option is to generate the mesh then use the Select Elements tool to select and delete the elements where the voids should be. Using this method requires renumbering the mesh nodes. There is a risk that you will not be able to delete all of the nodes related to the elements which can make your mesh unusable to SRH-2D.

3 Assign Boundary Conditions

Two arcs are needed to define the pressure zone. Each arc should be created on an SRH-2D boundary condition coverage. When creating the arcs, make certain all 2D mesh elements between the arcs are quadrilateral elements. Also, it is advisable to have at least one row of quadrilateral elements just past the downstream arc.

Once the arcs have been drawn, select both arcs and open the SRH-2D Linear BC dialog. Set both arcs to the Pressure type, making sure the correct arc ID is assigned to upstream versus downstream, and turn on the Overtopping option.

Both the boundary condition coverage and the 2D mesh can be added to your SRH-2D simulation to have a pressure zone with overtopping included in the results.

Try out adding a pressure zone in SMS today!

This post was originally published September 12, 2018.

Blog tags: 

Pages